当前:首页 > 中考网 > 中考复习

中考复习:初中数学三角函数公式

中考复习:初中数学三角函数公式

三角函数公式
正弦(sin):角的对边比上斜边
余弦(cos):角的邻边比上斜边
正切(tan):角的对边比上邻边
余切(cot):角的邻边比上对边
正割(sec):角的斜边比上邻边
余割(csc):角的斜边比上对边
sin30=1/2
sin45=根号2/2
sin60=根号3/2
cos30=根号3/2
cos45=根号2/2
cos60=1/2
tan30=根号3/3
tan45=1
tan60=根号3
两角和公式
sin(A+B) = sinAcosB+cosAsinB
sin(A-B) = sinAcosB-cosAsinB ?
cos(A+B) = cosAcosB-sinAsinB
cos(A-B) = cosAcosB+sinAsinB
tan(A+B) = (tanA+tanB)/(1-tanAtanB)
tan(A-B) = (tanA-tanB)/(1+tanAtanB)
cot(A+B) = (cotAcotB-1)/(cotB+cotA) ?
cot(A-B) = (cotAcotB+1)/(cotB-cotA)
2015倍角公式
Sin2A=2SinA?CosA
Cos2A=Cos^A-Sin^A=1-2Sin^A=2Cos^A-1
tan2A=2tanA/1-tanA^2
2015三倍角公式
tan3a = tan a tan(/3+a) tan(/3-a)
2015半角公式
2015和差化积
sin(a)+sin(b) = 2sin[(a+b)/2]cos[(a-b)/2]
sin(a)-sin(b) = 2cos[(a+b)/2]sin[(a-b)/2]
cos(a)+cos(b) = 2cos[(a+b)/2]cos[(a-b)/2]
cos(a)-cos(b) = -2sin[(a+b)/2]sin[(a-b)/2]
tanA+tanB=sin(A+B)/cosAcosB
2015积化和差
sin(a)sin(b) = -1/2*[cos(a+b)-cos(a-b)]
cos(a)cos(b) = 1/2*[cos(a+b)+cos(a-b)]
sin(a)cos(b) = 1/2*[sin(a+b)+sin(a-b)]
cos(a)sin(b) = 1/2*[sin(a+b)-sin(a-b)]
2015诱导公式
sin(-a) = -sin(a)
cos(-a) = cos(a)
sin(/2-a) = cos(a)
cos(/2-a) = sin(a)
sin(/2+a) = cos(a)
cos(/2+a) = -sin(a)
sin(-a) = sin(a)
cos(-a) = -cos(a)
sin(+a) = -sin(a)
cos(+a) = -cos(a)
tanA=tanA = sinA/cosA
2015万能公式
2015其它公式
2015其他非重点三角函数
csc(a) = 1/sin(a)
sec(a) = 1/cos(a)
2015双曲函数
sinh(a) = [e^a-e^(-a)]/2
cosh(a) = [e^a+e^(-a)]/2
tg h(a) = sin h(a)/cos h(a)
公式一:
设为任意角,终边相同的角的同一三角函数的值相等:
sin(2k+)= sin
cos(2k+)= cos
tan(2k+)= tan
cot(2k+)= cot
公式二:
设为任意角,+的三角函数值与的三角函数值之间的关系:
sin(+)= -sin
cos(+)= -cos
tan(+)= tan
cot(+)= cot
公式三:
任意角与 -的三角函数值之间的关系:
sin(-)= -sin
cos(-)= cos
tan(-)= -tan
cot(-)= -cot
公式四:
利用公式二和公式三可以得到-与的三角函数值之间的关系:
sin(-)= sin
cos(-)= -cos
tan(-)= -tan
cot(-)= -cot
公式五:
利用公式-和公式三可以得到2-与的三角函数值之间的关系:
sin(2-)= -sin
cos(2-)= cos
tan(2-)= -tan
cot(2-)= -cot
公式六:
/2及3/2与的三角函数值之间的关系:
sin(/2+)= cos
cos(/2+)= -sin
tan(/2+)= -cot
cot(/2+)= -tan
sin(/2-)= cos
cos(/2-)= sin
tan(/2-)= cot
cot(/2-)= tan
sin(3/2+)= -cos
cos(3/2+)= sin
tan(3/2+)= -cot
cot(3/2+)= -tan
sin(3/2-)= -cos
cos(3/2-)= -sin
tan(3/2-)= cot
cot(3/2-)= tan
(以上kZ)
这个物理常用公式我费了半天的劲才输进来,希望对大家有用
Asin(t+)+ Bsin(t+) =
{(A^2 +B^2 +2ABcos(-)} ? sin{ t + arcsin[ (A?sin+B?sin) / {A^2 +B^2; +2ABcos(-)} }
表示根号,包括{}中的内容
函数名 正弦 余弦 正切 余切 正割 余割
在平面直角坐标系xOy中,从点O引出一条射线OP,设旋转角为,设OP=r,P点的坐标为(x,y)有
正弦函数 sin=y/r
余弦函数 cos=x/r
正切函数 tan=y/x
余切函数 cot=x/y
正割函数 sec=r/x
余割函数 csc=r/y
(斜边为r,对边为y,邻边为x。)
以及两个不常用,已趋于被淘汰的函数:
正矢函数 versin =1-cos
余矢函数 covers =1-sin
正弦(sin):角的对边比上斜边
余弦(cos):角的邻边比上斜边
正切(tan):角的对边比上邻边
余切(cot):角的邻边比上对边
正割(sec):角的斜边比上邻边
余割(csc):角的斜边比上对边
同角三角函数间的基本关系式:
平方关系:
sin^2()+cos^2()=1 cos^2a=(1+cos2a)/2
tan^2()+1=sec^2() sin^2a=(1-cos2a)/2
cot^2()+1=csc^2()
积的关系:
sin=tan*cos
cos=cot*sin
tan=sin*sec
cot=cos*csc
sec=tan*csc
csc=sec*cot
倒数关系:
tancot=1
sincsc=1
cossec=1
直角三角形ABC中,
角A的正弦值就等于角A的对边比斜边,
余弦等于角A的邻边比斜边
正切等于对边比邻边,
三角函数恒等变形公式
两角和与差的三角函数:
cos(+)=coscos-sinsin
cos(-)=coscos+sinsin
sin()=sincoscossin
tan(+)=(tan+tan)/(1-tantan)
tan(-)=(tan-tan)/(1+tantan)
三角和的三角函数:
sin(++)=sincoscos+cossincos+coscossin-sinsinsin
cos(++)=coscoscos-cossinsin-sincossin-sinsincos
tan(++)=(tan+tan+tan-tantantan)/(1-tantan-tantan-tantan)
辅助角公式:
Asin+Bcos=(A^2+B^2)^(1/2)sin(+t),其中
sint=B/(A^2+B^2)^(1/2)
cost=A/(A^2+B^2)^(1/2)
tant=B/A
Asin+Bcos=(A^2+B^2)^(1/2)cos(-t),tant=A/B
倍角公式:
sin(2)=2sincos=2/(tan+cot)
cos(2)=cos^()-sin^()=2cos^()-1=1-2sin^()
tan(2)=2tan/[1-tan^2()]
三倍角公式:
sin(3)=3sin-4sin^3()
cos(3)=4cos^3()-3cos
半角公式:
sin(/2)=((1-cos)/2)
cos(/2)=((1+cos)/2)
tan(/2)=((1-cos)/(1+cos))=sin/(1+cos)=(1-cos)/sin
降幂公式
sin^2()=(1-cos(2))/2=versin(2)/2
cos^2()=(1+cos(2))/2=covers(2)/2
tan^2()=(1-cos(2))/(1+cos(2))
万能公式:
sin=2tan(/2)/[1+tan^2(/2)]
cos=[1-tan^2(/2)]/[1+tan^2(/2)]
tan=2tan(/2)/[1-tan^2(/2)]
积化和差公式:
sincos=(1/2)[sin(+)+sin(-)]
cossin=(1/2)[sin(+)-sin(-)]
coscos=(1/2)[cos(+)+cos(-)]
sinsin=-(1/2)[cos(+)-cos(-)]
和差化积公式:
sin+sin=2sin[(+)/2]cos[(-)/2]
sin-sin=2cos[(+)/2]sin[(-)/2]
cos+cos=2cos[(+)/2]cos[(-)/2]
cos-cos=-2sin[(+)/2]sin[(-)/2]
推导公式
tan+cot=2/sin2
tan-cot=-2cot2
1+cos2=2cos^2
1-cos2=2sin^2
1+sin=(sin/2+cos/2)^2
其他:
sin+sin(+2/n)+sin(+2*2/n)+sin(+2*3/n)++sin[+2*(n-1)/n]=0
cos+cos(+2/n)+cos(+2*2/n)+cos(+2*3/n)++cos[+2*(n-1)/n]=0 以及
sin^2()+sin^2(-2/3)+sin^2(+2/3)=3/2
tanAtanBtan(A+B)+tanA+tanB-tan(A+B)=0
cosx+cos2x+...+cosnx= [sin(n+1)x+sinnx-sinx]/2sinx
证明:
左边=2sinx(cosx+cos2x+...+cosnx)/2sinx
=[sin2x-0+sin3x-sinx+sin4x-sin2x+...+ sinnx-sin(n-2)x+sin(n+1)x-sin(n-1)x]/2sinx (积化和差)
=[sin(n+1)x+sinnx-sinx]/2sinx=右边
等式得证
sinx+sin2x+...+sinnx= - [cos(n+1)x+cosnx-cosx-1]/2sinx
证明:
左边=-2sinx[sinx+sin2x+...+sinnx]/(-2sinx)
=[cos2x-cos0+cos3x-cosx+...+cosnx-cos(n-2)x+cos(n+1)x-cos(n-1)x]/(-2sinx)
=- [cos(n+1)x+cosnx-cosx-1]/2sinx=右边
等式得证
三角函数的诱导公式
公式一:
设为任意角,终边相同的角的同一三角函数的值相等:
sin(2k+)=sin
cos(2k+)=cos
tan(2k+)=tan
cot(2k+)=cot
公式二:
设为任意角,+的三角函数值与的三角函数值之间的关系:
sin(+)=-sin
cos(+)=-cos
tan(+)=tan
cot(+)=cot
公式三:
任意角与 -的三角函数值之间的关系:
sin(-)=-sin
cos(-)=cos
tan(-)=-tan
cot(-)=-cot
公式四:
利用公式二和公式三可以得到-与的三角函数值之间的关系:
sin(-)=sin
cos(-)=-cos
tan(-)=-tan
cot(-)=-cot
公式五:
利用公式一和公式三可以得到2-与的三角函数值之间的关系:
sin(2-)=-sin
cos(2-)=cos
tan(2-)=-tan
cot(2-)=-cot
公式六:
/2及3/2与的三角函数值之间的关系:
sin(/2+)=cos
cos(/2+)=-sin
tan(/2+)=-cot
cot(/2+)=-tan
sin(/2-)=cos
cos(/2-)=sin
tan(/2-)=cot
cot(/2-)=tan
sin(3/2+)=-cos
cos(3/2+)=sin
tan(3/2+)=-cot
cot(3/2+)=-tan
sin(3/2-)=-cos
cos(3/2-)=-sin
tan(3/2-)=cot
cot(3/2-)=tan
(以上kZ)

关闭
CopyRight 2017 | 语文360网 | 邮件:| 鲁ICP备15023639号-1