高考网

当前:首页 > 高考网 > 科目辅导 > 数学

高中数学平面向量基本概念

高中数学平面向量基本概念

高二数学知识点整理高二数学平面向量学习笔记知识点。高二数学知识点:平面向量!今天整理出了高二的知识点,大家一起看看。

1.高二数学平面向量基本概念:

向量的定义、向量的模、零向量、单位向量、相反向量、共线向量、相等向量。

2.高二数学平面向量加法与减法的代数运算:

(1)若a=(x1,y1),b=(x2,y2)则ab=(x1+x2,y1+y2).

向量加法与减法的几何表示:平行四边形法则、三角形法则。

向量加法有如下规律:+=+(交换律);+(+c)=(+)+c(结合律);

3.高二数学平面向量实数与向量的积:实数与向量的积是一个向量。

(1)||=||·||;

(2)当a>0时,与a的方向相同;当a<0时,与a的方向相反;当a=0时,a=0.

高二数学平面向量两个向量共线的充要条件:

(1)向量b与非零向量共线的充要条件是有且仅有一个实数,使得b=.

(2)若=,b=则‖b.

平面向量基本定理:

若e1、e2是同一平面内的两个不共线向量,那么对于这一平面内的任一向量,有且只有一对实数,,使得=e1+e2.

4.P分有向线段所成的比:

设P1、P2是直线上两个点,点P是上不同于P1、P2的任意一点,则存在一个实数使=,叫做点P分有向线段所成的比。

当点P在线段上时,>0;当点P在线段或的延长线上时,<0;

分点坐标公式:若=;的坐标分别为,,;则(≠-1),中点坐标公式:.

5.向量的数量积:

(1).向量的夹角:

已知两个非零向量与b,作=,=b,则∠AOB=叫做向量与b的夹角。

(2).两个向量的数量积:

已知两个非零向量与b,它们的夹角为,则·b=||·|b|cos.

其中|b|cos称为向量b在方向上的投影.

(3).向量的数量积的性质:

若=,b=则e·=·e=||cos(e为单位向量);

⊥b·b=0(,b为非零向量);||=;

cos==.

(4).向量的数量积的运算律:

·b=b·;·b=(·b)=·(b);(+b)·c=·c+b·c.

6.主要思想与方法:

高二数学平面向量本章主要树立数形转化和结合的观点,以数代形,以形观数,用代数的运算处理几何问题,特别是处理向量的相关位置关系,正确运用共线向量和平面向量的基本定理,计算向量的模、两点的距离、向量的夹角,判断两向量是否垂直等。由于向量是一新的工具,它往往会与三角函数、数列、不等式、解几等结合起来进行综合考查,是知识的交汇点。

向量简介:
​​​​​​
在数学中,向量(也称为欧几里得向量、几何向量、矢量),指具有大小(magnitude)和方向的量。它可以形象化地表示为带箭头的线段。箭头所指:代表向量的方向;线段长度:代表向量的大小。与向量对应的量叫做数量(物理学中称标量),数量(或标量)只有大小,没有方向。
向量的记法:印刷体记作黑体(粗体)的字母(如a、b、u、v),书写时在字母顶上加一小箭头“→”。 如果给定向量的起点(A)和终点(B),可将向量记作AB(并于顶上加→)。在空间直角坐标系中,也能把向量以数对形式表示,例如xOy平面中(2,3)是一向量。
在物理学和工程学中,几何向量更常被称为矢量。许多物理量都是矢量,比如一个物体的位移,球撞向墙而对其施加的力等等。与之相对的是标量,即只有大小而没有方向的量。一些与向量有关的定义亦与物理概念有密切的联系,例如向量势对应于物理中的势能。
几何向量的概念在线性代数中经由抽象化,得到更一般的向量概念。此处向量定义为向量空间的元素,要注意这些抽象意义上的向量不一定以数对表示,大小和方向的概念亦不一定适用。因此,平日阅读时需按照语境来区分文中所说的"向量"是哪一种概念。不过,依然可以找出一个向量空间的基来设置坐标系,也可以透过选取恰当的定义,在向量空间上介定范数和内积,这允许我们把抽象意义上的向量类比为具体的几何向量。

关闭
CopyRight 2017 | 语文360网 | 邮件:| 鲁ICP备15023639号-1